Black-Box Optimization Using Geodesics in Statistical Manifolds

نویسنده

  • Jérémy Bensadon
چکیده

Information geometric optimization (IGO) is a general framework for stochastic optimization problems aiming at limiting the influence of arbitrary parametrization choices: the initial problem is transformed into the optimization of a smooth function on a Riemannian manifold, defining a parametrization-invariant first order differential equation and, thus, yielding an approximately parametrization-invariant algorithm (up to second order in the step size). We define the geodesic IGO update, a fully parametrization-invariant algorithm using the Riemannian structure, and we compute it for the manifold of Gaussians, thanks to Noether’s theorem. However, in similar algorithms, such as CMA-ES (Covariance Matrix Adaptation Evolution Strategy) and xNES (exponential Natural Evolution Strategy), the time steps for the mean and the covariance are decoupled. We suggest two ways of doing so: twisted geodesic IGO (GIGO) and blockwise GIGO. Finally, we show that while the xNES algorithm is not GIGO, it is an instance of blockwise GIGO applied to the mean and covariance matrix separately. Therefore, xNES has an almost parametrization-invariant description.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Statistical Models Based Multi-objective Optimization

Optimization problems with “expensive” and “black box” objectives are difficult to tackle. Some experience is accumulated in single-objective global optimization of those problems using algorithms based on statistical models of objective functions. The generalization of this approach to the multi-objective optimization is discussed.

متن کامل

Three Dimensional Manifolds All of Whose Geodesics Are Closed

Three Dimensional Manifolds All of Whose Geodesics Are Closed John Olsen Wolfgang Ziller, Advisor We present some results concerning the Morse Theory of the energy function on the free loop space of S for metrics all of whose geodesics are closed. We also show how these results may be regarded as partial results on the Berger Conjecture in dimension three.

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

Global Characterization of the CEC 2005 Fitness Landscapes Using Fitness-Distance Analysis

We interpret real-valued black-box optimization problems over continuous domains as black-box landscapes. The performance of a given optimization heuristic on a given problem largely depends on the characteristics of the corresponding landscape. Designing statistical measures that can be used to classify landscapes and quantify their topographical properties is hence of great importance. We tra...

متن کامل

On Stretch curvature of Finsler manifolds

In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied.  In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every  (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2015